False negatives = C/(A+C) False positives = B/(B+D) Sensitivity = A/(A+C) Efficiency = D/(D+B) Predicted hit reliability = A/(A+B) Predicted no-hit reliability = D/(D+C) Overall reliability = (D+A)/(A+B+C+D) Figure 3-1. Calculation of reliability parameters | Figure 4-1 | Correlations that has | e a significant Pearso | n's correlation coefficient | |-------------|-----------------------|-------------------------|------------------------------| | riguic 4-1. | Conciations that have | c a significant i carso | ii s corretation coefficient | | Figure 4-1. | Correlations that have a signifi | icant Pearson's | con | elatio | n coe | fficien | nt |------------------------|--|-----------------------|---------|-----------------|------------------------------|-------------------|-------------|--------------|--------------------|------------|---|----------|------------|-------------------------|-------------|--------------|----------------------|-------------------------------|----------|------|------|----------|-------|-------|---------|------|--------------|-----------------|------------------------------|--------|----------|------------|-----------------------|-----------------------------------|---------|--------|-------------------------------------|------------------|------------------------------------|-----------|-----------------------------------|--| | | | onal | | | | | | | | | | | | | | | | | ganic | | | | | | | | | | Organic | | n | | | | | s | | | | | | | | | | ventio | | Щ | | | | | | | | H | E | | | Pesticides | . Organ | 1 | - | | | | : | | | | o. | | Organotin | | sam | | | icide | | | | lol | | Phthalate | | | | | | Con, | | | | | НРАН | | | | | | | LPAH | 4 | | PAH sum | Pesti | Misc | | | | | Metal | | | | | Misc. | | Orga | | PAH | | | Pesti | | | | Phenol | | Phth | ਰ ਓ | | | | | ane | ıne | ane | | | | | 9 | | | | | | | | | | | | e | Total Dioxin Furans (calc'd) | | | | el-Range Hydrocarbons | ohex | hexa | hex | © | | (c,q) | | enol
s(2-ethylhexyl) phthalate | | | | | | | ne | thene | ene | ene | cene | pyre | 1 5 | ene | | | | | : | (p, c | ਰੇ | | | | | | | | | | e | o) sun | | | | droca | cvc | ycloh | cycle | calc | 1 1 | ਰ | 0-1 | pht | alate | | | | | | race | | eryl | rant | nthra | c,d)py | | hthal | မ | ene | | | | ca ca | calc | _ | | | | | | | | | enze | Fura | | _ | | Hy | l of | chloroc | loro | r
ane (| calc | Ifan | | (lxyl) | phth | | | | _ _ _ | | enzo(a)anthrace | izo(a)pyrene
izo(b)fluora | zo(g,h,i)perylene | ene | ız(a,h)anthı | hene
,2,3 | | 10tal HFAHS (calc d)
2-Methylnaphthalene | then | naphthylei | e | lene | Phenanthrene | Fotal LPAHs (calc'd) | Total PAHs (calc'd) Carbazole | nzofuran | 2 | , | _ | | | | | | xachlorobenzene | tal Dioxin Furans | . | outyltin | ibutyltin | ange | Aldrin
ulnha-Hexachlorocyclohe | cachl | xachlo | thoxychlor
al Chlordane (calc'd) | al DDTs (calc'd) | otal Endosulfan (c
Methylphenol | orop | nylhe | Butyl benzyl phthalate
Di-n-butyl phthalate | | | | Fines (%) TOC Ammonia | ide | zo(a) | zo(a,
zo(b) | g)oz | zo(k) |)zua | ranther
no(1,2, | ine l | ethy | enaphthe | naph | Antinracene
Fluorene | Vaphthalene | ant | | II PA | ozua | mony | nic | Chromium | opper | _ ř | sel sel | nium | . l d | achle | I Di | ıtylti | inqoi | ributyltin | el-R | H. | -Неха | a-Hex | hoxy
II Ch | | I En | achlor | nol
2-etł | /l be | | Group | Chemical | Fine | Sulfide | Ben | Ben | Ben | Ben
Chr. | Dibe | Eluc
Inde | Pyre | 1012
2-M | Ace | Ace | And | Nap | Pher | Tota | Cart Ots | Dibe | Anti | Arse | G G | Cop | Lead | Nic. | Sele | Silv
Zinc | Hex | Tota | Dib | Mor | | Dies | Aldrin
alnha-F | beta | delta | Met
Tota | Tota | Tota
4-M | Pent | Pher
Bis(| Buty
Di-n | | Conventional | Fines (%) TOC | Ammonia | - | Sulfide | | _ | | | | | | | | _ | НРАН | Benzo(a)anthracene
Benzo(a)pyrene | - | | X
X | | | | | x x
x x | | | | X X X | | | X X | | | X | Benzo(b)fluoranthene | | - 1 | x x | | | | | x x | | | | x x | | | x 2 | Benzo(g,h,i)perylene
Benzo(k)fluoranthene | 1 | - 1 | x x | | | x x | | | X X | | | X X | | | X 2 | Chrysene | † | - 1 | | X | X | | X | x x
x x | X X | | | X X X | | | X X | | XX | Dibenz(a,h)anthracene | | - 1 | | | | x x | | x x | | | | x x | | | | | x x | Fluoranthene
Indeno(1,2,3-c,d)pyrene | 1 | - 1 | | | | x x x x | | | X X
X X | | | X X X | | | X X | | | X | Pyrene |] | - 1 | | | | x x | | | Х | | | x x | | | x 2 | | | x | HPAH sum
LPAH | Total HPAHs (calc'd) 2-Methylnaphthalene | | | X X | X | X | x x | X | x x | X | | | x x x x | | v | X X | | | X | LFAII | Acenaphthene | | | x | | | x | | X | x x | x | А | | X | | X X | | | X
X | Acenaphthylene | | | | | | x x | | | X X | | | X | | | x 2 | Anthracene
Fluorene | - | | x x x | | | x x x | | x x
x | X X
X X | | X
X | X
X | X | | X X | | x x | X
X | Naphthalene | | | | | | | •• | • | | x | | • | - | | | x . | • | Phenanthrene
Total LPAHs (calc'd) | | | x x | X | X | | | x x | | | | | | | | x x | | X | PAH sum | Total PAHs (calc'd) | - | | x x | X | X
X | x x x | X
X | | X X
X X | | | | | X | x 2 | X X | _ | X
X | Pesticide | Carbazole |] | | X | X | | x x | | | x x | | | X | | | | X | - | | , | Misc. organic
Metal | Dibenzofuran
Aluminum | - | | X | | | X | | X | X X | X | Х | Х | X | | X 2 | X X | X. | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Antimony | Arsenic
Cadmium | Chromium | 1 | Copper |] | Lead
Mercury | - | Nickel | Selenium | 1 | Silver
Zinc | † | Misc. organic | Hexachlorobenzene | Total dioxins/furans (calc'd) Total PCBs Aroclors (calc'd) | 1 | Organotin | Dibutyltin | X | | | | | | | | | | | | | | Monobutyltin
Tetrabutyltin | - | X | | v | | | | | | | | | | | | | Tributyltin | х | | | | | | | | | | | | | PAH sum | Diesel-Range Hydrocarbons | \Box | | | | | | х | | | | | Pesticide | Aldrin alpha-Hexachlorocyclohexane | 1 | beta-Hexachlorocyclohexane | 1 | delta-Hexachlorocyclohexane
Methoxychlor | - | Total chlordane (calc'd) | <u> </u> | Total DDTs (calc'd) | Phenol | Total endosulfan (calc'd) 4-Methylphenol | 1 | х | | | | | | | X | \neg | I | | | Pentachlorophenol | 1 | x | | | I | | Phthalate | Phenol
Bis(2-ethylhexyl) phthalate | - | + | | | riiiiaiate | Butyl benzyl phthalate | 1 | Di-n-butyl phthalate | 1 | This figure summarizes the correlations that have a significant Pearson's correlation coefficient (minimum r: 0.9; maximum p value: 0.01). Note: Only the upper triangle of the original matrix was filled; see intersections of rows and columns for important correlations with each chemical. Figure 4-2. Pairwise scatter plots for metals Biological endpoints were control adjusted; skewed chemical analytes were natural-log-transformed. Figure 4-3. Pairwise scatter plots for biological endpoints and selected chemical and physical analytes ## DO NOT QUOTE OR CITE Figure 5-1. Floating percentile model Figure 5-6. Calculation of apparent effects thresholds Figure 5-7. Individual logistic regression models for ammonia for three biological endpoints at three effects levels ## DO NOT QUOTE OR CITE Figure 5-8. Median PrMax value and observed proportion of toxic data within PrMax intervals of 0.05 Figure 5-9. Reliability results for three biological endpoints at three effects levels